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Abstract: In this work we model the spread of sylvatic plague between two prairie dog colonies. The mathematical
model is one where a population of fleas transmits the plague to the host population of prairie dogs. Distance
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spread the disease between prairie dogs. Semi-analytical solutions for equilibria are derived using a perturbation
series approach.

Key–Words: Sylvatic Plague, Black Tailed Prairie Dog, Host, Mathematical Model, Epidemiology

1 Introduction

Black Tailed prairie dogs are a rodent primarily found
on the plains and western regions of the United States.
Though virtually harmless, prairie dog species have
fallen victim to urbanization and made enemies with
farmers and ranchers. Specifically in South Dakota
and other ranching states, the prairie dog burrows
occasionally break the legs of cattle and horses and
ruin thousands of acres of pasture land. Therefore,
little effort has been made in the past to conserve the
species and protect the health of the rodent.

In 1985, the Black Footed Ferret Mustela nigripes
was thought to be extinct after a colony discovered in
South Dakota in 1966 disappeared in 1974 (Hillman,
1968) until a small population was discovered in
Wyoming (Beers, 2000). Since the discovery, the
ferrets were taken into captivity and bred until a rein-
troduction effort could take place. The ferrets need
two things to survive: grassland and prairie dogs. The
black footed ferret is an obligate-dependence species
on the prairie dog for diet and habitat; therefore,
without a large population of prairie dogs, the ferrets
have no chance of successful reintroduction (Clark,
1994), (Miller et al., 1988), (Miller et al., 1987), and
(Miller & Cully, 2001).

Now that prairie dogs show a purpose in nature,
the health of the prairie dog is monitored but is

greatly threatened due to the recent outbreak of
sylvatic plague(Antolin et al, 2002), (Augustine et al.,
2008), (Barnes, 1993), (Collinge et al., 2005), (Cully
et al., 1997), (Cully et al., 2006), and (Cully et al.,
2000). The plague is similar to that found in humans
during the 14th century in England and remote areas
today, but is transmitted through saliva rather than
buboes. Since prairie dogs do not have much saliva
to saliva contact, the main transmitter of the disease
in our model is taken to be the flea through blood
cross-contamination (Abbott & Rocke, 2012).

In this model, the flea is considered the only vec-
tor by which plague is transmitted between prairie
dogs; therefore, the governing equations only repre-
sent the transfer of plague between prairie dogs and
fleas. Support for this is given by (Tripp et al., 2009)
where they show the number of fleas present seems
to vary directly with plague epizootics. A healthy
flea that feeds on a plagued prairie dog then con-
tracts the disease itself. After contracting the dis-
ease, the flea will always contain bacterium in the GI
tract. When a flea jumps to a healthy prairie dog and
feeds, the plague can then be transferred to the healthy
prairie dog. In 2009, Georgescu and Van Peursem
(Georgescu & Van Peursem, 2009) came up with a
mathematical model for the interaction within a sin-
gle colony. This paper will look further into the in-
teraction between two colonies by adding a migration
term so the spread of plague to and from two distinct
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colonies can be predicted. The model can be used to
look at the effectiveness of flea control within colonies
to inhibit the spread of plague, as well as the effec-
tive and economical control of plague. The model
uses four governing differential equations. By mod-
eling total prairie dog population, total flea popula-
tion, plagued prairie dog population, and plagued flea
population, the conditions for plague to increase, de-
crease, or die off are examined. The main parameter
of interest is the death rate of the flea. Our model as-
sumes applying pesticides to prairie dog colony bur-
rows in order to increase this death rate (Seery et al.,
2003). When decreasing the vector of the disease, the
model shows plague can possibly be eliminated or at
least controlled (Hoogland et al., 2004), (Webb et al.,
2006), (Lorange et al., 2005), (Hoogland, 1995), (Thi-
agarajan et al., 2008), and (Eskey, 1940).

2 Mathematical Model

For the mathematical model of our two-colony model
we start with the equations of a single colony model
of (Georgescu & Van Peursem, 2009) which were
loosely based off of the governing equations of a deer-
tick model (Gaff & Gross, 2007). The four equations,
model the total population of both prairie dogs and
fleas as well as the plagued populations of the prairie
dogs and fleas. We will follow the same notation and
let P be the total number of prairie dogs, F be the to-
tal number of fleas, S be the number of infected (sick)
prairie dogs, and D be the number of infected (dis-
eased) fleas.

In order to model the interaction between two
colonies, we add a migration term into these original
governing equations. We let the distance x between
two colonies govern the number of prairie dogs which
will leave one colony and enter into the other. As
x increases, the number of prairie dogs which will
transfer between colonies will obviously decrease.
So, we take l to be our rate of transfer with units
length/time and use l/x as our inverse relationship
for the migration term. This assumption seems to be
supported by work done by (Cully et al., 2010).

We let P1 represent the the total prairie dogs of
the first population and P2 be total prairie dogs of the
second. Although we allow for different carrying ca-
pacities in the two populations, kp1 and kp2 , we as-
sume that both populations want to tend to roughly the
same number in that prairie dogs will migrate from the
larger population to the smaller population. By taking
l/x times the difference between the populations, we
get the number of prairie dogs per unit time migrating
from one colony to the other. The larger population

will lose the prairie dogs while the smaller popula-
tion gains the same amount. We use dr for the natural
death rate of the prairie dogs. The governing equation
for the prairie dogs is then

dP1

dt
= rp

(
1− P1

kp1

)
P1 +

l

x
(P2 − P1)− drP1

(1)

dP2

dt
= rp

(
1− P2

kp2

)
P2 +

l

x
(P1 − P2)− drP2.

(2)

If P1 > P2, we see from the second term in 1 and
2 that P1 will lose population and P2 will gain popu-
lation. In order to model fleas, we simple multiply the
number of migrating prairie dogs by m, the average
number of fleas per prairie dog. Since we consider
dusting (killing fleas) in the two populations at differ-
ent levels, we use different values for the parameter
we will vary later on, the death rates for the fleas, df1
and df2. The governing flea equations become

dF1

dt
= rf

(
1− F1

mP1

)
F1 +

lm

x
(P2 − P1)− df1F1

(3)

dF2

dt
= rf

(
1− F2

mP2

)
F2 +

lm

x
(P1 − P2)− df2F2.

(4)

We see here that , F1 will have a decrease in pop-
ulation while F2 gains the same amount for the case
P1 > P2.

When looking at the plagued populations, the sit-
uation is more complicated due to the fact that the
level of plague may not be the same in both colonies.
Therefore, we consider which population is losing
prairie dogs and what proportion of those prairie dogs
are likely to have plague. The proportion of prairie
dogs with plague will either be S1/P1 or S2/P2 de-
pending on the migrating population. Since we need
to consider the possibility of either P1 or P2 to be
greater, we use the heaviside function H(x) to in-
clude both possibilities in the equations. Recall that
the heaviside function is zero if x ≤ 0 and one if
x > 0. Consider
l

x
(P2 − P1)

[
S1
P1
H(P1 − P2) +

S2
P2
H(P2 − P1)

]
(5)

and
l

x
(P1 − P2)

[
S1
P1
H(P1 − P2) +

S2
P2
H(P2 − P1)

]
.

(6)

WSEAS TRANSACTIONS on BIOLOGY 
and BIOMEDICINE Stephanie Jensen, Dan Van Peursem

E-ISSN: 2224-2902 68 Issue 2, Volume 10, July 2013



For the case P1 > P2 equations 5 and 6 imply that
H(P1−P2) will be one and H(P2−P1) will be zero.
Equations 5 and 6 then become

l

x
(P2 − P1)

(
S1
P1

)
(7)

and

l

x
(P1 − P2)

(
S1
P1

)
(8)

showing the correct proportion of prairie dogs with
plague leaving S1 and joining S2 respectively. Using 5
and 6 in our original governing equations for plagued
prairie dogs, we obtain

dS1
dt

= tp

(
P1 − S1
P1

)
D1 +

l

x
(P2 − P1) ·[

S1
P1
H(P1 − P2) +

S2
P2
H(P2 − P1)

]
− c1drS1

(9)

dS2
dt

= tp

(
P2 − S2
P2

)
D2 +

l

x
(P1 − P2) ·[

S1
P1
H(P1 − P2) +

S2
P2
H(P2 − P1)

]
− c1drS2.

(10)

We note that for the last term we multiply the nat-
ural death rate for the prairie dogs dr by the constant
c1 > 1 to indicate the higher deathrate due to the dis-
ease.

Similar to the plagued prairie dogs, the plagued
flea population uses the heaviside function to deter-
mine what proportion of fleas that are transferring
have plague. Multiplying our migrating prairie dogs
by m and using the appropriate ratios D1/F1 and
D2/F2 we get the following governing equations.

dD1

dt
= tf

(
S1
P1

)
(F1 −D1) +

ml

x
(P2 − P1) ·[

D1

F1
H(P1 − P2) +

D2

F2
H(P2 − P1)

]
− c2df1D1

(11)

dD2

dt
= tf

(
S2
P2

)
(F2 −D2) +

ml

x
(P1 − P2) ·[

D1

F1
H(P1 − P2) +

D2

F2
H(P2 − P1)

]
− c2df2D2

(12)

2.1 Governing Equations

The governing equations for the two colony system
are then given by equations 1, 2, 3, 4, 9, 10, 11, and
12.

The previous parameters remain the same as the
single colony system given by (Georgescu & Van
Peursem, 2009). We note these parameters in Table 1
where the values were obtained from different studies
and books written about prairie dogs and/or fleas
and references are noted within the tables. Many of
these were also cited by (Webb et al., 2006). Some
additional parameters introduced with this two colony
model are the parameters l and x the proportionality
constant and the distance parameter respectively.
Although, l would typically be unknown, it could be
obtained from field studies. We will use l = 0.1 and
x = 1000 (where we consider meters to be our unit of
length) simply to obtain information for mathematical
analysis.

2.2 Scaling

We scale Pi and Di by kpi , Fi and Di by mkpi (their
respective carrying capacities, and time by the recip-
rocal prairie dog death rate 1/dr. The final scaled
equations are given by
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Par Meaning Value

rp
Growth Rate of 0.0866
Prairie Dog (Hoogland, 1995)

rf
Growth Rate of

0.866 [†]
Flea

kp
Carrying Capacity 200
of Prairie Dog (Hoogland, 1995)

m
Maximum Fleas 11
per Prairie Dog (Hoogland et al., 2004)

dr
Death Rate of 0.0002
Prairie Dog (Hoogland, 1995)

df
Death Rate of 0.07
Flea (Burroughs, 1953)

tp
Transfer Rate from 0.09
Fleas to Prairie Dogs (Eskey, 1940)

tf
Transfer Rate from 0.28
Prairie Dogs to Fleas (Eskey, 1940)

c1dr

Death Rate of 0.5
Plagued Prairie

(Cully & Will., 2001)
Dog

c2df
Death Rate of 0.33
Plagued Flea (Eskey, 1940)

l
Transfer Rate

0.1 [?]
between colonies

x
Distance between

1000 [??]
colonies

Table 1: Parameter Values and Interpretations with
References
† Calculated from the model to be consistent with
m = 11
? Unknown that will likely depend on the terrain
(Collinge et al., 2005)
?? Parameter will vary. Measured in meters.

dP̄1

dt̄
= β

(
1− P̄1

)
P̄1 + ε

(
µP̄2 − P̄1

)
− P̄1 (13)

dP̄2

dt̄
= β

(
1− P̄2

)
P̄2 + ε

(
µ−1P̄1 − P̄2

)
− P̄2

(14)

dF̄1

dt̄
= κ

(
1− F̄1

P̄1

)
F̄1 + ε

(
µP̄2 − P̄1

)
− α1F̄1

(15)

dF̄2

dt̄
= κ

(
1− F̄2

P̄2

)
F̄2 + ε

(
µ−1P̄1 − P̄2

)
− α2F̄2

(16)

dS̄1
dt̄

= ω

(
P̄1 − S̄1
P̄1

)
D̄1 + ε

(
µP̄2 − P̄1

)
·[

S1
P1
H
(
µ−1P1 − P2

)
+
S2
P2
H (µP2 − P1)

]
− c1S̄1

(17)

dS̄2
dt̄

= ω

(
P̄2 − S̄2
P̄2

)
D̄2 + ε

(
µ−1P̄1 − P̄2

)
·[

S1
P1
H
(
µ−1P1 − P2

)
+
S2
P2
H (µP2 − P1)

]
− c1S̄2

(18)

dD̄1

dt̄
= σ

(
S̄1
P̄1

)(
F̄1 − D̄1

)
+ ε
(
µP̄2 − P̄1

)
·[

D1

F1
H
(
µ−1P1 − P2

)
+
D2

F2
H (µP2 − P1)

]
− c2α1D̄1

(19)

dD̄2

dt̄
= σ

(
S̄2
P̄2

)(
F̄2 − D̄2

)
+ ε
(
µ−1P̄1 − P̄2

)
·[

D1

F1
H
(
µ−1P1 − P2

)
+
D2

F2
H (µP2 − P1)

]
− c2α2D̄2.

(20)

where the dimensionless parameters and values
are given in Table 2.

The parameters remain the same as the single
colony model of (Georgescu & Van Peursem, 2009)
with the addition of ε and µ. We set µ = 0.5 to rep-
resent colony one having twice as large a carrying ca-
pacity as colony two and we will examine ε = 0.5
closer in a later section.

2.3 Equilibria

By using dusting techniques, it is assumed that we
can alter the death rate of the flea by using different
amounts of insecticide (Hoogland et al., 2004) and
thus be able to obtain the various equilibria states for
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Dimensionless Parameters Set To Value

α df
dr

350

β
rp
dr

433

κ
rf
dr

4330

ω mtp
dr

4950

σ
tf
dr

1400

ε l
xdr

0.5

µ
kp2
kp1

0.5

Table 2: Dimensionless Parameters with Values

the 4 classes in the two populations. Due to the com-
plexity of the two colony system, we assume ε to be
small and use a perturbation series approximation in
ε, to obtain equilibria solutions in a later section. To
leading order we get the same equilibria as the one
colony system. This is reasonable as the migration
parameter will have very little effect on individual
colony populations for large separation distances. Be-
cause the same equilibria as the single colony model
hold to leading order for small ε, we have E1 the triv-
ial equilibria, E2 only healthy prairie dogs, E3 only
healthy prairie dogs and fleas, and E4 coexistence of
plague and healthy species as the possible equilibria
states. We are able to obtain each possible combina-
tion of equilibria in the two populations by altering α1

and α2 as demonstrated in the next section.

2.4 Graphed Equilibria

The various equilibria possibilities are obtained
using the values in Table 2 with population
one having twice as large of carrying capac-
ity as population two. We are also using an ε
value of 0.5. The initial populations were set to
P̄1(0) = .6, P̄2(0) = .7, F̄1(0) = .6, F̄2(0) = 0.7.
Recall this represents a population being 60%
and 70% of the respective carrying capacities.
The initial populations of plague were set to
S̄1(0) = .1, S̄2(0) = .2, D̄1(0) = .1 and D̄2(0) = .2.

We see in Figure 1 that for the case with heavy
dusting in both populations at a level that would
increase the flea death rate to a little over twelve times
the normal rate of the healthy fleas, α1 = α2 = 4250,
we get the equilibria case E2 where both colonies

Figure 1: Only Healthy Prairie Dogs Survive for large
dusting values of (α1 = α2 = 4250) with β =
433, κ = 4330, ω = 4950, σ = 1400, µ = 0.5, and
ε = 0.5. Population 1 - Black, Population 2- Gray
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exhibit the property that only the healthy prairie dogs
survive. Both plagued species go extinct as well as
the healthy fleas.

We see in Figure 2 that for the case with mild
dusting in both populations at a level that would
increase the flea death rate to roughly 1.5 times the
normal rate of the healthy fleas α1 = α2 = 520,
both colonies exhibit the property that both the
diseased populations of prairie dogs and fleas, S and
D respectively, go extinct leaving only healthy prairie
dogs and fleas.

We see in Figure 3 that we get coexistance in
both colonies between plagued and healthy species
for (α1 = α2 = 350) which corresponds to no
dusting, ie the natural death rate for the fleas. This
shows that without dusting, or natural flea death
rates, the plague will exist in the colonies among
both species, prairie dogs and fleas. We see the total
populations P and F are at high percentages of their
carrying capacities while the plagued populations,
S and D, also show a modest percentage of the
population. Given that most populations observed
display virtually complete die off with the plague, our
model supports (Webb et al., 2006) where they argue
fleas can’t be the only source to maintain an epizootic.

We have shown that for ε = .5 we can achieve
all the equilibria as the single colony model of
(Georgescu & Van Peursem, 2009) which was demon-
strated in Figures 1, 2, and 3 where the high flea
death rates (high dusting rates) correspond to only
healthy prairie dogs surviving, medium flea death
rates (medium dusting rates) corresponds to healthy
prairie dogs and fleas surviving, and low flea death
rates (little or no dusting) corresponds to coexistence
between healthy and plagued species of both fleas and
prairie dogs. One could also vary the dusting rates
with these three values in the two colonies get any
combinations of the equilibria states between the two
colonies.

3 Analytical Approximation

3.1 Perturbation Approximation

In order to obtain a semi-analytical solution, we use an
ε-perturbation approximation. Assuming ε terms are
small in comparison to the others, we approximate our
equilibria solutions for the differential equations by a
series expansion. We will obtain an order ε approxi-
mation by assuming P ≈ P0+εP1. Using the notation
that P1 = P10+εP11 and P2 = P20+εP21 we note the

Figure 2: Only Healthy Prairie Dogs and Fleas Sur-
vive for medium dusting values of (α1 = α2 = 520)
with β = 433, κ = 4330, ω = 4950, σ = 1400, µ =
0.5, and ε = 0.5. Population 1 - Black, Population 2-
Gray
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Figure 3: Coexistance of Healthy and Plagued Species
for normal flea death rates of (α1 = α2 = 350) with
β = 433, κ = 4330, ω = 4950, σ = 1400, µ = 0.5,
and ε = 0.5. Population 1 - Black, Population 2- Gray

order one solutions turn out to be the equilibria values
of the one colony system (Georgescu & Van Peursem,
2009) due to essentially dropping the migration term
by setting ε = 0. Therefore to leading order the equi-
libria solutions are given by,

P10 = P20 =
β − 1

β
(21)

Fi0 =
βκ− κ− αiβ + αi

βκ

i = 1, 2 (22)

Si0 =

αiβκc1c2 + αiβωσ − βκωσ − αiκc1c2 + κωσ − ωσαi

βσ(αiω − κc1 − κω)
,

i = 1, 2 (23)

Di0 =
(1− β)(αiωσ + αiκc1c2 − κωσ)

βκω(αic2 + σ)
,

i = 1, 2 (24)

along with the trivial solutions which are zero.
The order ε correction terms are given by:

P11 =
µP20 − P10

−β + 2βP10 + 1
(25)

P21 =
P10 − µP20

µ(−β + 2βP20 + 1)
(26)

F11 =
P 3
10
− µP20P

2
10
− κF 2

10
P11

κP 2
10
− 2κF10P10 − α1P 2

10

(27)

F21 =
µP 3

20
− P10P

2
20
− µF 2

20
P21

µ
(
κP 2

20
− 2κF20P20 − α2P 2

20

) (28)

S11 =
AQ+ EC

EB −AZ
(29)

S21 =
LJ +MG

NL−GK
(30)

D11 =
BQ+ CZ

EB −AZ
(31)

D21 =
NM + JK

NL−GK
(32)

where,
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A =
ω

P10

(P10 − S10) (33)

B =
ωD10

P10

+ c1 (34)

C =
ωS10D10P11

P 2
10

+ (µP20 − P10) ·[
S20
P20

H(µP20 − P10) +
S10
P10

H(P10 − µP20)

]
(35)

Z =
σ

P10

(F10 −D10) (36)

E =
σS10
P10

+ c2α1 (37)

Q =
σ

P10

(
S10F11 +

S10P11(D10 − F10)

P10

)
+

(µP20 − P10)
[D20

F20

H(µP20 − P10)+

D10

F10

H(P10 − µP20)
]

(38)

G =
ω

P20

(P20 − S20) (39)

N =
ωD20

P20

+ c1 (40)

J =
ωS20D20P21

P 2
20

+
(
µ−1P10 − P20

)
[
S20
P20

H(µP20 − P10) +
S10
P10

H(P10 − µP20)

]
(41)

K =
σ

P20

(F20 −D20) (42)

L =
σS20
P20

+ c2α2 (43)

M =
σ

P20

(
S20F21 +

S20P21(D20 − F20)

P20

)
+(

µ−1P10 − P20

) [D20

F20

H(µP20 − P10)+

D10

F10

H(P10 − µP20)
]
. (44)

Using the values from Table 2, we are able to cal-
culate the approximate values for the equilibria using
our perturbation estimates to order ε.

P1ε = P10 + εP11 (45)

P2ε = P20 + εP21 (46)

F1ε = F10 + εF11 (47)

F2ε = F20 + εF21 (48)

S1ε = S10 + εS11 (49)

S2ε = S20 + εS21 (50)

D1ε = D10 + εD11 (51)

D2ε = D20 + εD21 (52)

We investigate further how sensitive our pa-
rameter ε is for the accuracy of our analytical
approximation. We keep α constant as to not alter
the analysis of varying ε. Letting α1 = α2 = 350,
which corresponds to the natural death rates of the
fleas and no dusting of insecticide, and the remaining
parameters are also defined as in Table 2, we com-
pare our perturbation estimates with those obtained
numerically using MAPLE to solve the differential
equations. Table 3 shows that for α1 = α2 = 350, the
order ε approximations are within 2.6% when ε = 5
or less. When we increase ε = 50 this accuracy goes
down with errors up to 21.3%. We also see that in
that case, the S and D population classes are the ones
with the largest error. This is due to the error being
compounded due to the dependence on the P and F
population classes. As colonies are spread further and
further away, the interaction between the two colonies
keeps decreasing. Eventually, the two colonies will be
far enough apart where almost no interaction occurs;
in this case, the single colony equations are sufficient
to model the distinct colonies.

4 Results and Discussion

The issues that have the most application and interest
are where two colonies are separated by smaller dis-
tances, ie. larger values of ε, and one of the colonies
will have plague and the other colony does not have
plague. This scenario leads to two main issues which
we will cover in the next two subsections. The first
issue would be that of asking if and how soon will
the second colony contract the plague, and the second
issue would be that of asking if we can merely dust
the plagued colony and not the plague-free colony to
prevent the spread of plague. Below, we present two
scenarios to address these issues.
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ε = 0.5

P1 P2 F1 F2

N 0.996 0.998 0.915 0.918
ε 0.997 0.999 0.916 0.917
Error 0.1% 0.1% 0.1% 0.1%

S1 S2 D1 D2

N 0.227 0.228 0.148 0.149
ε 0.227 0.227 0.148 0.149
Error 0.0% 0.4% 0.0% 0.0%

ε = 5.0

P1 P2 F1 F2

N 0.991 1.01 0.910 0.928
ε 0.992 1.01 0.911 0.918
Error 0.1% 0.0% 0.1% 1.1%

S1 S2 D1 D2

N 0.224 0.233 0.147 0.152
ε 0.224 0.227 0.147 0.148
Error 0.0% 2.6% 0.0% 2.6%

ε = 50.0

P1 P2 F1 F2

N 0.947 1.08 0.866 1.01
ε 0.940 1.11 0.858 0.930
Error 0.7% 2.8% 0.9% 7.9%

S1 S2 D1 D2

N 0.203 0.269 0.132 0.178
ε 0.199 0.227 0.129 0.140
Error 2.0% 15.6% 2.3% 21.3%

Table 3: Perturbation results vs. Numerical Results
for (α1 = α2 = 350) with β = 433, κ = 4330, ω =
4950, σ = 1400, µ = 0.5 and ε = 0.5, 5.0, 50.0

4.1 How Long Until Plague Arrives

The first issue we address is that of how long would
it take for a colony to get plague from another colony
with plague. It is worth mentioning that the model
encourages spread of plague when the two popula-
tions are at different populations and not necessarily
different proportions of their carrying capacities. This
is reflected in the parameter µ that appears inside the
Heaviside Functions. To minimize that confusion, for
this section we will set µ = 1 so that differences in
ratios of carrying capacities and differences in overall
populations will be equivalent. Other parameters will
be the same as in Table 2. We see in Figure 4 that
plague is incurred in the second population at 1.0%
of the carrying capacity when the scaled time reaches
t̄ = .0129 which corresponds to t = 64.5 days. Even
when ε = 5∗10−6 the neighboring colony will still ac-
quire plague at the 1% level by 185 days. As expected,
we see that the further distances, ie. smaller values of
ε, act like a time delay for the arrival of plague in the
other colony. In actuality, if the delay is long enough,
the plague will wipe out the first colony before it has
time to spread. This puts a physical limit as to how
small ε is allowed to be for physical reality.

4.2 Controlling the Spread of Plague

When we fix ε = 0.5 and α2 = 350 (no dusting in
the plague colony), plague will still spread to the first
colony unless one dusts the first colony at the criti-
cal value of α1 = 520 that we found earlier. How-
ever, this raises the question that if we dust the plague
colony at a level to wipe out the plague α2 = 520, can
we get by without dusting the plague free colony and
still prevent the spread of plague. We see in Figure
5 that the answer is no. The plague merely transfers
from one colony to the other. In fact, we need to also
dust this colony at the critical value of α1 = 520 in
order to prevent the spread of plague.

5 Conclusion

Both the single and two colony model prove to be
useful. The single colony model shows it is possi-
ble to eliminate plague in a colony by dusting fleas
with a pesticide to increase the death rate of the fleas.
Scaling the equations and setting the derivatives equal
to zero simultaneously, four equilibria are found: E1

trivial, E2 only P̄ , E3 only P̄ and F̄ , and E4 coexis-
tance of P̄ , F̄ , S̄, and D̄. Using only the control pa-
rameter, α, all three non trivial equilibria are obtained
numerically in MAPLE. This shows that plague can
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Figure 4: Plague is spread to adjacent colony for ini-
tial densities of P1(0) = S1(0) = .6, P2(0) =
S2(0) = .7, S1(0) = D1(0) = 0 and S2(0) =
D2(0) = .2 with parameters (α1 = α2 = 350) with
β = 433, κ = 4330, ω = 4950, σ = 1400, µ = 1.0,
and ε = 0.5, Population 1- Black, Population 2- Gray

Figure 5: Plague is prevented in a colony by in-
creasing dusting rates to α1 = 520 for parameters
(α2 = 350) with β = 433, κ = 4330, ω = 4950, σ =
1400, µ = 1.0, and ε = 0.5, Population 1- Black,
Population 2- Gray
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be eliminated by dusting, although it may not be eco-
nomically possible or practical. It was discovered that
one must dust the plague free colony at the critical
level α = 520 in order to prevent the spread. By as-
suming a small migration coefficient, ε, we are able
to numerically show all equilibria found for the sin-
gle colony model by only altering α1 and α2 for each
respective colony. We also derived an approximate
analytical solution for the populations to order ε us-
ing a perturbation expansion. In doing so, we find that
the perturbation theory is very accurate for ε ≤ 5.0.
Finally, case studies allow us to use the numerical
model in MAPLE to find solutions for real-life prob-
lems where the distance may or may not be large. We
are able to use the model to answer questions about
the time frame for which a colony will catch plague
from another and if dusting could prevent the spread
of plague.
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